Мультимедийные ИТ-системы

Современные информационные системы отличаются большим разнообразием форматов и аппаратных устройств для ввода, обработки, представления и хранения информации и данных. Это — текст, таблицы, диаграммы, звук, плоская и 3D-графика, анимация, видео. Развитие цифровых технологий представления и хранения данных обязано, прежде всего, тому, что во второй половине ХХ века информация стала массовым продуктом, товаром для продажи. А это означает необходимость тиражируемости этого продукта и доставки конечному потребителю.

Взаимодействие с информацией перестало быть пассивным — достижения в области компьютерных и коммуникационных технологий сделало этот процесс интерактивным. Технологии хранения и тиражирования данных на твердых (Hard Disk Drive — HDD, Compact Disk — CD, Digital Video Disk — DVD), электронных (Flash Memory) и виртуальных (Virtual Media) носителях, технологии записи, преобразования и считывания информации (Data Recording/Conversion/ Playback), обилие форматов, а также программные средства с удобными интерфейсами в совокупности образуют среду, которая позволяют непрофессиональному пользователю работать с именно информацией, а не с компьютерной техникой. Такая среда носит название мультимедийной, а технологиии программно-аппаратные средства для их интеграции и реализации — мультимедийными технологиями (Рис.46).

Рис.46. Мультимедийная среда

Мультимедийный «документ» (MM File) не является простой суммой текстовых, звуковых графических, видео и анимационных фрагментов — это специально подготовленная сущность, воздействующая на пользователя как целостная система. При этом пользователь погружается в предметную среду, с которой он прямо взаимодействует, фактически являясь не только участником, но соавтором и режиссером взаимодействия. Следовательно, мультимедиа интегрирует в одном или нескольких программных приложениях и продуктах разнообразные виды традиционных и оригинальных видов представления и передачи информации.

К тому же работа мультимедийных приложений происходит, как правило, в реальном времени, и это позволяет выйти на новый уровень интерактивного общения «человек — приложение — компьютер — среда (реальная или виртуальная)».

Например, в основу мультимедиа-средств, создаваемых на базе Web-технологий (Hypermedia), положена общая объектно-ориентированная методология ассоциативных связей и концепция гипертекста. Широкая распространенность такого вида средств объясняется тем, что абсолютное большинство пользователей в настоящее время имеют доступ к сети и средствам создания элементов Web-приложений, а описания языков программирования, разметки текста, техническая документация и стандарты легко доступны на сайтах производителей.



Быстрое увеличение мощности вычислительных средств и объемов оперативной памяти, совершенствование технологий всячески стимулирует развитие мультимедиа и способствует появлению новых направлений и технических решений. Это, прежде всего, отражается в их интерактивности, создании средств виртуальной реальности (Virtual Reality — VR) и виртуальных миров, объёмного и интерактивного цифрового телевидения (Interactive Television — ITV), мультимедийных клиент-серверных сетей. К примеру, можно упомянуть такие новые решения, как IP/TV-сервер и IP/TV-клиент для Windows, созданные компанией Cisco на базе продуктов для Internet-телевидения.

Технологии мультимедиа поддерживаются специальными аппаратными и программными средствами, а также общими и специализированными форматами данных.

К аппаратным средствам можно отнести:

· основные средства: компьютер с высокопроизводительным процессором и памятью большого объема, манипуляторами (мышь, джойстик) и мультимедиа-монитором с встроенными стереодинамиками;

· специальные средства: CD и DVD приводы для воспроизведения и записи, TV-тюнеры и фрейм-грабберы (устройства, которые позволяют дискретизировать видеосигнал, сохранять отдельные кадры изображения в буфере с последующей записью на диск либо выводить их непосредственно в текущее или выделенное окно на мониторе компьютера), графические ускорители, звуковые и видео платы (адаптеры/контроллеры), поддержка акустических систем и др.

Распространенные программные средства, реализующие мультимедиа продукты или являющиеся их составной частью:

· звуковые (Adobe Audition), анимационные (Alias Maya) и графические редакторы (Adobe Photoshop, Corel Draw), средства компьютерной верстки документов (Page Maker, Venture), сканирования и распознавания текстов (Fine Reader), подготовки презентаций (Power Point);

· кодирующие и декодирующие пакеты — кодеки (Coding/ Decoding);

· пакеты для создания музыкальных дисков, просмотра цифровых фотографий, создания альбомов и галерей изображений с музыкальным сопровождением и т. д.

Ниже приводятся основные форматы для обработки и сжатия мультимедийных данных.



Текстовые — txt, doc, docx, rtf, pdf, html. Практически все мультимедийные устройства по умолчанию настроены на чтение этих распространенных текстовых форматов и на работу с ними.

Графические — JPEG, GIF, BMP, TIF (статические) и MJPEG, DVI, Wavelete (динамические, для создания анимаций). Сетевая графика представлена преимущественно двумя форматами — JPEG (Joint Photographics Experts Group) и GIF (Graphics Interchange Format). Оба этих формата являются компрессионными, то есть данные в них уже находятся в сжатом виде. Каждый из этих форматов, имеет ряд настраиваемых параметров (в том числе и параметр сжатия), позволяющих управлять соотношением "качество-размер файла".

За счет сознательного снижения качества изображения, практически не влияющего на восприятие, можно добиться уменьшения объема графического файла чуть ли не в 25 раз. GIF поддерживает 24-битный цвет, реализованный в виде палитры содержащей до 256 цветов, JPG — 24-битный цвет в палитре 16,8 миллионов цветов (True Color). Эти форматы широко используются в таких известных графических пакетах, как Adobe Photoshop, Adobe Illustrated, Paint Brash, Corel Draw и многих других.

Форматы сжатия звуковых данных — AIF, ASF, AU, AVI, BUN, MID, MP2, MP3, MPEG, SND, WAV, WRK. Наиболее известными форматами в настоящее время являются формат AU (Sun Microsystems) и WAVE (Microsoft). Наиболее приемлемым для передачи аудио данных через Internet является формат MP3. Он позволяет получать звуковые файлы с таким же качеством, как и качество Audio CD, но с уменьшением объёма от 4 до 20 раз.

Форматы сжатия видеоинформации — форматы, реализуемые семейством международных стандартов, созданных под эгидой подкомитета JTC1 — экспертной группы MPEG (Moving Picture Experts Group). Официальное название группы — ISO/IEC JTC1 SC29 WG11, её задача — разработка единых норм кодирования аудио и видеосигналов. Стандарты MPEG используются в технологиях CD-i и CD-Video, являются частью стандарта DVD, активно применяются в цифровом радиовещании, кабельном и спутниковом ТВ, Интернет-радио, мультимедийных компьютерных продуктах, коммуникациях по каналам ISDN и во многих других электронных ИТ и системах.

Семейство стандартов быстро растет: в 2001 году появился стандарт MPEG-21 (Multimedia Framework), описывающий структуры мультимедиа, в 2006 году — группа исключительно важных стандартов: MPEG-A (Multimedia Application Format), MPEG-B (Multimedia System Technologies), MPEG-C (Multimedia Video Technologies), MPEG- D (Multimedia Audio Technologies), MPEG-E (Multimedia Midllware) и MPEG-U3D (Multimedia Universal 3D File Format).

На сегодняшний день непрофессиональным пользователям известны наиболее применяемые для массовых мультимедиа продуктов форматы MPEG-1.2,3,4. MPEG-1 был создан для кодирования и сжатия движущихся изображений и связанных с ними звуковых потоков со скоростью передачи данных до 1.5 Мбит/сек. MPEG-2 предназначен для обработки видеоизображений при пропускной способности в пределах от 3 до 15 Мбит/сек. На стандарт MPEG-2 переходят многие телеканалы — сигнал, сжатый в соответствии с этим стандартом, транслируется через телевизионные спутники, используется для архивации больших объёмов видеоматериала. MPEG-3 вначале предназначался для использования в системах телевидения высокой чёткости (High Defenition Television — HDTV) со скоростью потока данных 20-40 Мбит/сек, но позже стал частью стандарта MPEG-2. MPEG-4 задает принципы работы с цифровым представлением медиаданных для трех областей: интерактивного мультимедиа, графических приложений и цифрового телевидения.

Рынок чрезвычайно быстро отреагировал на факт появления и популярности мультимедиа-систем — все крупнейшие производители компьютерной техники и программного обеспечения стали участниками мультимедиа-индустрии. В свое время с подачи американской компании Sun Microsystems появился термин "системы управления мультимедиа" (Digital Media Management — DMM). Системы DMM должны обладать следующими свойствами:

· доступность: мультимедиа-документы должны быть доступны любому пользователю, имеющему настольный компьютер, ноутбук или мобильное устройство (см. п. 5 настоящего параграфа), снабженные надлежащим клиентским ПО;

· извлекаемость: документ должен быть легко найден по его характеристикам или ссылкам и загружен для считывания;

· интеграция: все типы данных необходимо хранить в едином логическом пространстве, форматы данных должны быть описаны в библиотеке метаданных;

· автоматизация накопления: ручной труд по каталогизации и индексации сводится к минимуму

· совместимость со смежными технологиями: необходимо, чтобы клиентское ПО гладко стыковалось с популярными средствами обработки и создания содержания документов;

· многоцелевое использование: документы следует хранить в цифровом разрешении, максимально доступном на данном устройстве — чтобы их можно было легко преобразовать в различные форматы без потери качества;

· защита: единицы хранения должны быть открыты для преобразования только для лиц с надлежащими правами доступа, а там, где это необходимо, следует обеспечить защиту интеллектуальных прав собственности.

На рис.47 показана общая архитектура системы DMM, отвечающая приведенным требованиям и рассчитанная на тонкого клиента. Это трехуровневая архитектура «клиент-сервер». На первом уровне находятся средства хранения медиа-данных, на втором — интерфейс клиент-серверной системы (доставка данных, обработка запросов), на третий уровень вынесены клиентские средства загрузки и доступа к документам.

Рис.47. Трехуровневая DDM-архитектура

В такой архитектуре система DMM содержит следующие компоненты:

· хранилище: сервер БД хранит документы и поддерживает различные способы хранения, доступа и обновления документов;

· загрузчик: реализует процессы автоматизирующие загрузку содержания в систему, включая запись, каталогизацию и индексацию;

· сервер доставки документов: доставляет документ пользователю в виде файлов либо в виде битового потока для последующей конвертации в нужный формат;

· браузер: по минимуму — это тонкий клиент, создающий среду для составления запросов, поиска и просмотра/проигрывания медиа-документов; расширения браузера для "толстых" клиентов реализуются через соответствующие сервисы;

· клиентские сервисы: являются средством расширения функциональных возможностей браузера;

· набор сервисов определяется требованиями пользователя и возможностями сервера.

Особое место в системе DMM занимает браузер. Браузер DMM представляет собой интерфейс пользователя для доступа и просмотра медиа-документов. Отделение браузера от уровня клиентских сервисов подчеркивает тот факт, что он может быть реализован с помощью любого стандартного Web-браузера. Это дает ряд преимуществ — например, независимость программного решения браузера от используемой платформы. Наращивание функциональных возможностей может происходить далее путем добавления сервисов в рамках общей организации системы.

Браузер создает интерфейс с сервисом запросов, который должен обеспечивать следующие функции:

· навигацию по связям между документами;

· иерархический доступ "каталог/файл", аналогичный обычному менеджеру файлов;

· интерфейсы для поиска по атрибутам и по полному тексту (желательно, чтобы они составляли единое целое);

· просмотр списка ответа, в том числе включающего идентифицирующие миниатюры (иконки).

Второй главный компонент браузера — проигрыватель (Player) для документов. Желательно, чтобы медиа-документы были представлены в распространенных стандартных форматах, либо легко преобразовывались в них — однако, современные браузеры в DMM, способны получать документы в их "родных" форматах и активизировать соответствующие приложения обработки, чтобы пользователь мог, например, сам редактировать документы.


6798862877472467.html
6798927406596094.html
    PR.RU™